

Rappel mathématique

plan

- 1. Calcule vectoriel
- 2. Systèmes de coordonnées
- 3. Intégrale
- 4. L'angle solide

I. Calcule vectoriel

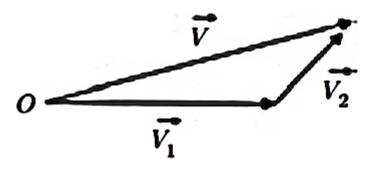
1. Somme de deux vecteurs

$$\vec{V} = \vec{V_1} + \vec{V_2}$$

$$\overrightarrow{V_1} = X_1 \overrightarrow{ex} + Y_1 \overrightarrow{ey} + Z_1 \overrightarrow{ez}$$

$$\overrightarrow{V_2} = X_2 \overrightarrow{ex} + Y_2 \overrightarrow{ey} + Z_2 \overrightarrow{ez}$$

$$\overrightarrow{V_1} = (X_1 + X_2)\overrightarrow{ex} + (Y_1 + Y_2)\overrightarrow{ey} + (Z_1 + Z_2)\overrightarrow{ez}$$

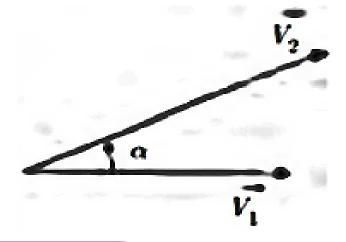


2. Produit scalaire

$$S = \overrightarrow{V_1} * \overrightarrow{V_2}$$

$$S = V_1 V_2 \cos \alpha$$

S est un scalaire Par définition où l'angle α est défini par $\alpha = (V_1, V_2)$.



- Le produit scalaire de deux vecteurs perpendiculaires est nul.
- Pour les vecteurs unitaires $\overrightarrow{e_x}$, $\overrightarrow{e_y}$, $\overrightarrow{e_z}$ on a :

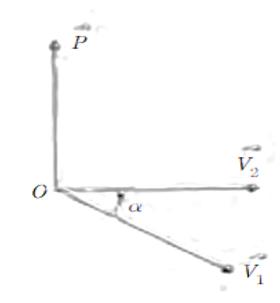
$$\overrightarrow{e_x} \cdot \overrightarrow{e_y} = \overrightarrow{e_y} \cdot \overrightarrow{e_z} = \overrightarrow{e_z} \cdot \overrightarrow{e_x} = 0$$

$$\overrightarrow{e_{\chi}} \cdot \overrightarrow{e_{\chi}} = \overrightarrow{e_{\gamma}} \cdot \overrightarrow{e_{\gamma}} = \overrightarrow{e_{z}} \cdot \overrightarrow{e_{z}} = 1$$

3. Produit vectoriel

$$P = \overrightarrow{V_1} \wedge \overrightarrow{V_2} = \overrightarrow{V_1} * \overrightarrow{V_2} | \sin \alpha |$$

- P est un vecteur : perpendiculaire au plan $(\overrightarrow{V_1}, \overrightarrow{V_2})$,
 - orienté de telle sorte que le trièdre $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, P soit direct,
 - de norme $\overrightarrow{V_1} * \overrightarrow{V_2} | \sin \alpha |$ où $\alpha = (\overrightarrow{V_1}, \overrightarrow{V_2})$.



- Le produit vectoriel de deux vecteurs parallèles est nul.
- Pour les vecteurs unitaires $\overrightarrow{e_x}$, $\overrightarrow{e_y}$, $\overrightarrow{e_z}$, on a :

$$\|\overrightarrow{e_x} \wedge \overrightarrow{e_y}\| = \|\overrightarrow{e_y} \wedge \overrightarrow{e_z}\| = \|\overrightarrow{e_z} \wedge \overrightarrow{e_x}\| = 1$$

$$\overrightarrow{e_x} \wedge \overrightarrow{e_x} = \overrightarrow{e_y} \wedge \overrightarrow{e_y} = \overrightarrow{e_z} \wedge \overrightarrow{e_z} = 0$$

4. Produit vectoriel

• Opérateur Nabla (∇)

$$abla = \mathbf{i} rac{\partial}{\partial x} + \mathbf{j} rac{\partial}{\partial y} + \mathbf{k} rac{\partial}{\partial z}$$

où

•i, j, k sont les vecteurs unitaires selon x, y, z.

• Gradient d'un scalaire $\phi(x, y, z)$

Le gradient d'une fonction scalaire ϕ est un vecteur :

$$\operatorname{grad}(\phi) = \nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}$$

• Divergence d'un vecteur $\overrightarrow{A} = (Ax, Ay, Az)$

La divergence mesure le flux sortant du champ :

$$\operatorname{div}(ec{A}) =
abla \cdot ec{A} = rac{\partial A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$$

• Rotationnel d'un vecteur A

Le rotationnel indique la rotation locale du champ :

$$\mathrm{rot}(ec{A}) =
abla imes ec{A} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ A_x & A_y & A_z \end{bmatrix}$$

$$\mathrm{rot}(ec{A}) = \left(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z}
ight)\mathbf{i} + \left(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x}
ight)\mathbf{j} + \left(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y}
ight)\mathbf{k}$$

II. Systèmes de coordonnées

1. Coordonnées cartésiennes :

Soient $R_0(O, x_0y_0z_0)$ un repère direct orthonormé de base $(\vec{i}, \vec{j}, \vec{k})$ et M la particule à repérer. Dans R_0 , la position de la

particule M est donnée par ses trois coordonnées cartésiennes (x,y,z), le vecteur position s'écrit :

$$\overrightarrow{OM} = \overrightarrow{Om} + \overrightarrow{mM} = x \vec{\imath} + y \vec{\jmath} + z \vec{k}$$

* Déplacement élémentaire:

Le vecteur déplacement élémentaire MM ' (M' est très voisin de M) s'écrit:

$$\overrightarrow{MM'} = \overrightarrow{d} \overrightarrow{OM} = \overrightarrow{dM} = dx \vec{i} + dy \vec{j} + dz \vec{k}$$

* Surfaces élémentaire:

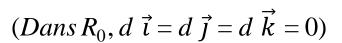
$$x = cst$$
 $dsx = dy*dz$

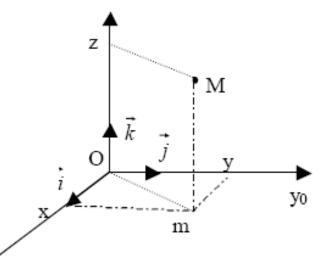
$$y = cst$$
 $dsy = dx*dz$

$$z=cst$$
 $dsz = dx*dy$

* volume élémentaire:

$$dV = dx*dy*dz$$





2. Coordonnées cylindrique:

Dans le système de coordonnées cylindriques, la position de la particule M est données par trois coordonnées cylindrique (ρ,θ,z) définit comme suit :

 $\rho = |Om| \text{ m est la projection de } M \text{ sur le plan } (O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \theta = \text{angle } (O\overrightarrow{x_0}, \overrightarrow{Om}) \text{ et z est la projection du vecteur position } \overrightarrow{OM} \text{ sur l'axe } \overrightarrow{Oz_0}.$

Une nouvelle base orthonormée directe $(\overrightarrow{e\rho}, \overrightarrow{e\theta}, \overrightarrow{k})$ est associée à ce système decoordonnées. Dans cette base, le vecteur positon \overrightarrow{OM} s'écrit : $\overrightarrow{OM} = \overrightarrow{Om} + \overrightarrow{mM} = \rho \overrightarrow{e\rho} + z \overrightarrow{k}$

* Déplacement élémentaire:

Le vecteur déplacement élémentaire MM ' (M' est très voisin de M) s'écrit:

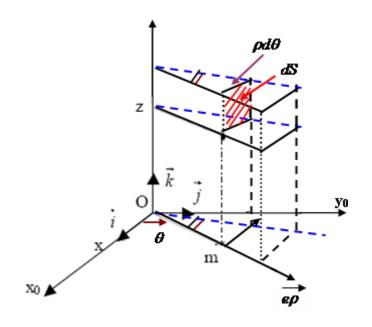
$$\overrightarrow{MM'} = \overrightarrow{d} \overrightarrow{OM} = \overrightarrow{dM} = d\rho \overrightarrow{e\rho} + \rho d\theta \overrightarrow{e\theta} + dz \overrightarrow{k}$$

Surfaces élémentaire:

$$\theta$$
= cst $ds\theta = d\rho*dz$
 ρ = cst $ds\rho = \rho d\theta*dz$
 z =cst $dsz = \rho d\theta*d\rho$

* volume élémentaire:

$$dV = \rho d\theta^* d\rho^* dz$$



3. Coordonnées spherique :

Dans le système de coordonnées sphériques, la position de la particule M est données par trois coordonnées sphériques (r, φ, θ) définit comme suit :

$$r = |\overrightarrow{OM}|$$
; $\theta = angle(\overrightarrow{Oz_0}, \overrightarrow{OM})$; $\varphi = angle(\overrightarrow{Ox_0}, \overrightarrow{Om})$

Dans la base (er, $e\varphi$, $e\theta$), le vecteur position s'écrit:

$$\overrightarrow{OM} = r \overrightarrow{er}$$

* Déplacement élémentaire:

Le vecteur déplacement élémentaire de la particule M en coordonnées sphériques est donné par :

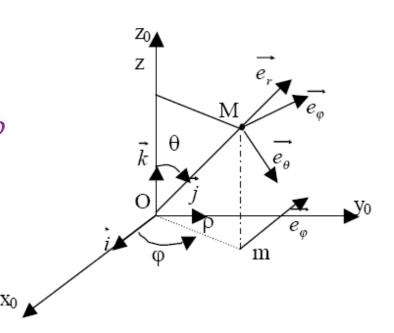
$$\overrightarrow{dOM} = dr \overrightarrow{er} + rd\theta \overrightarrow{e\theta} + r(\sin\theta) d\varphi \overrightarrow{e_{\varphi}}$$

Surfaces élémentaire:

$$r = \operatorname{cst}$$
 $dSr = r \rho d\theta d\varphi$; $\operatorname{avec} \rho = r \sin \theta dS = r^2 \sin \theta d\theta d\varphi$
 $\varphi = \operatorname{cst}$ $\operatorname{ds} \varphi = \operatorname{rd} \theta \operatorname{dr}$
 $\theta = \operatorname{cst}$ $\operatorname{ds} \theta = r \sin \theta d\varphi \operatorname{dr}$

* volume élémentaire:

$$dV = r^2 \sin\theta \, dr d\theta \, d\varphi$$



III.Intégrale

1. Intégral simple

$$\lim_{\infty} \sum_{i=1}^{n} f(xi) \Delta xi = \int_{a}^{b} f(x) dx$$

2. Intégral double

$$\iint f(x,y)dxdy = \iint [\int f(x,y)dx]dy = \iint [\int f(x,y)dy]dx$$

3. Intégrale triple

$$\iiint f(x,y)dxdy = \int dx \int dy \int f(x,y,z)dz = \int dy \int dz \int f(x,y,z)dx = \int dx \int dz \int f(x,y,z)dy$$

Remarque:

Les surfaces et volumes finis se calcule en intégrant ses éléments de surface dans les cas de système cylindrique où sphérique

$$S = \iint dS$$
 et $V = \iiint dv$

Intégrale de surface Intégrale de volume

1. Surface élémentaire:

La surface élémentaire dS s'obtient par variation élémentaire des deux variables, θ et ϕ

$$\theta \rightarrow \theta + d\theta$$
 et $\varphi \rightarrow \varphi + d\varphi$

$$\Rightarrow dS = r \rho d\theta d\phi$$
; avec $\rho = r \sin \theta$

$$\Rightarrow dS = r^2 \sin\theta \, d\theta \, d\varphi$$

2. Volume élémentaire:

Le volume élémentaire $d\square$ s'obtient par variation élémentaire de trois variables, r, θ , φ

$$\theta \rightarrow \theta + d\theta$$
; $\varphi \rightarrow \varphi + d\varphi$; $r \rightarrow r + dr$

$$\Rightarrow d\tau = dS dr = r^2 \sin\theta d\theta d\phi dr$$

Remarque:

IV. Angle solide

1. difinition:

Surface ouverte	Surface ferme
Une surface qui s'appuie sur un contour ferme	Une surface qui s'appuie sur un plan ferme

2. Orientation d'une surface:

- la face interne est négative (-)
- la face externe est positive (+)

3. Vecteur élément de surface \overrightarrow{dS} :

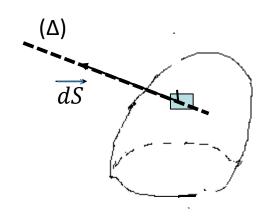
Surface élémentaire : dS

 $\overrightarrow{dS} = \overrightarrow{[dS}|\overrightarrow{n}$ tellque $|\overrightarrow{n}| = 1$

 \overrightarrow{dS} : - direction: la droit (Δ) perpendiculaire sur dS

- sens : de l'intérieure vers extérieure

- modules : $\overrightarrow{[dS]}$ = dS



4. Angle plan:

C'est l'angle sous lequel du point O on voit la droit [AB]

$$\theta = \frac{L}{R}$$

Angle plan élémentaire dθ

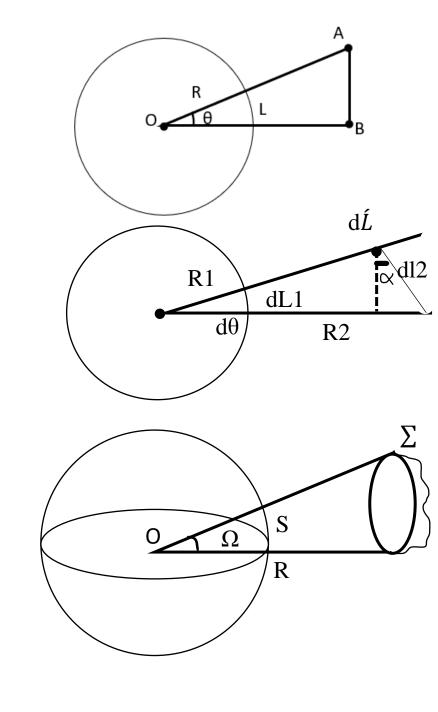
$$d\theta = \frac{dL1}{R1} = \frac{d\hat{L}}{R2} = \frac{dL2*\cos\alpha}{R2}$$

5. Angle solide:

La portion d'espace délimitée par les génératrices du cône de sommet O correspond à un angle dit « solide », noté Ω .

L'angle solide Ω est définit par : $\Omega = \frac{\Sigma}{R}$

 Σ est la surface d'intersection d'une sphère de centre 0 et de rayon R avec la portion d'espace caractérisée par Ω



Angle solide élémentaire

La surface élémentaire dS, autour du point M est vue de O sous l'angle solide d Ω

Par définition :
$$d\Omega = \frac{\overrightarrow{dS} \cdot \overrightarrow{u}}{r^2} = \frac{dS \overrightarrow{n} \cdot \overrightarrow{u}}{r^2} = \frac{dS \cos \theta}{r^2} = \frac{d\Sigma}{r^2}$$

L'angle solide sous lequel on vois une surface finie s'obtient en intégrant d Ω

$$\Omega = \iint_{S} d\Omega$$

